
XNA Development: Tutorial 3

By Matthew Christian (Matt@InsideGamer.org)

Code and Other Tutorials Found at http://www.insidegamer.org/xnatutorials.aspx

After analyzing the basics, we’re finally ready to work on getting stuff into our application. We’ll be focusing
on the technical side of game programming in this series but remember, you should design a bit before
starting any project you would like to go anywhere with. If you’re simply following these tutorials I’ve done
the design for you though have designed it in a way where we will create tech demos utilizing certain features
instead of full fledged games. Going back to this specific tutorial, 2D is nice, but 3D is better and we will be
starting with 3D. Most new game developers want to create 3D games though are discouraged with the
difficulty of it. Worry not, XNA will help us transition straight into 3D (we’ll see 2D later anyways). Lets focus
on 3D, importing a mesh, and displaying the mesh to the screen.

Note: 3D is almost completely based on mathematical topics such as linear algebra (matrices, matrix
operations, etc…) so hopefully you’ve had some kind of background in the subject. If not, I’ll try my best to
provide you with the basics to get through this tutorial. But, I suggest you begin to learn linear algebra, it’ll
make everything easier for you in the long run.

Before You Start

Following the first two tutorials you should be able to use the same project if you’d like, otherwise make sure
you start a new project and create it with the Windows Game (2.0) template. I will be using the same project
from the previous tutorials (WindowsGame1) and will be extending this project to include a new class. You
can change the names of the files if you’d like but for ease of reference I use default names in this tutorial
such as Game1.cs and Program.cs.

GameModel Class Design

As noted above, we will be creating a new class which will have three very basic features:

1. Load a specified model

2. Place the model in our game world

3. Render the object

You should be able to notice at least 4 methods of this class
(including the constructor and destructor) and possibly have some
kind of an idea what you want to name them and what they will
take as method parameters. In fact, we will only have 4 total
methods in our GameModel class (one is overloaded) (Diagram 1).

In future tutorials we will modify this class and the methods and
variables contained within. This is simply a very basic class we’re
writing to draw a model to the screen and should be suitable
enough for our needs.

GameModel Class

GameModel (ContentManager,

GraphicsDeviceManager, string)

~GameModel ()

SetPosition (Vector3)

SetPosition (float, float, float)

Render ()

Diagram 1 – GameModel Class

http://www.insidegamer.org/xnatutorials.aspx

Programming the GameModel Class

Add a new class to your project by right clicking on the project name, scrolling to Add, and selecting from New
Item… from the menu that appears. A box resembling the template selection when starting a new project will
appear (Figure 1). Select Class from the Visual Studio Installed Templates area and change the name (mine
will be named GameModel.cs).

Figure 1 - Add New Item Dialogue

After selecting Add, the item should appear in your Solution Explorer and should open in the editor window as
the file you are currently working with. Near the top of the file you should see a group of ‘using’ statements
which include the system and XNA libraries. Your game file (default is Game1.cs) also has this block of code
but has region tags placed around it which allow the programmer to ‘collapse’ the lines of code. To get this
effect, place the following line of code above the line using System;

#region Using Statements

Here we’re specifying what is called the region directive. It allows us to section off blocks of code and expand
or collapse that block while editing our file in Visual Studio. The region directive needs to be terminated with
another line (otherwise the computer won’t ever find the end of the region and you will receive a compiler
error). After the line using Microsoft.Xna.Framework.Storage;, add the following

#endregion

Now we’ve created a new region in our code and can expand it or collapse it as necessary (Figure 2).

Figure 2 - Using Statements Region

Let’s start working on the GameModel class. Create basic layouts for each of your functions by following the
code below and placing it within your beginning and ending GameModel class tags (for a challenge, try
creating the basic definitions based on the class diagram on Page 3 and check your answer against the below
code).

 public GameModel(ContentManager content, GraphicsDeviceManager graphics, string

modelName)

 {

 //Set managers and load our model

 }

 ~GameModel() { }

 public void SetPosition(Vector3 position)

 {

 //Set Position using a Vector

 }

 public void SetPosition(float x, float y, float z)

 {

 //Set Position using floats

 }

 public void Render()

 {

 //Render our model using position data

 }

If you don’t understand this code, don’t worry, let’s go over it. Starting from the top we have our class
constructor which we need to declare as public so we can create new objects of this class within our main file

(you’ll hear lots more about objects later on). The constructor takes 3 arguments, a ContentManager, a
GraphicsDeviceManager, and a string. Our GraphicsDeviceManager is created in our initial game file,
Game1.cs, and used (in this context) to determine our screen’s aspect ratio respectively. In XNA 2.0, the
ContentManager is built directly into the game project and can be accessed in the Game1 file using the ‘this’
operator. The ContentManager is used to load in content through the XNA content pipeline (load the model
being used). Finally, our method takes a string which will be asking for the model we want to load. In this
method we want to initialize the rest of the class with values we’ll need later. The constructor will set some
global class variables with this data using the following code.

 public GameModel(ContentManager content, GraphicsDeviceManager graphics, string

modelName)

 {

 //Load model and set graphics manager

 gModel = content.Load<Model>(modelName);

 //Calculate and set aspect ratio

 aspectRatio = graphics.GraphicsDevice.Viewport.Width /

graphics.GraphicsDevice.Viewport.Height;

 //Default position

 positionVector = new Vector3(0.0f, 0.0f, 0.0f);

 }

We have 3 new global variables, gModel, aspectRatio, and positionVector. All help the model define what it is
and where it is but we will need them later in the Render() method which is why we set them globally in the
class. Notice how a model is loaded using the ContentManager passed in, specifying the type of object being
loaded, and specifying the name of the model (which we also passed in). Following the load is a quick
calculation for our aspect ratio by dividing the screen width by the screen height and finishing the contructor
by defaulting the position of the model to (0,0,0). Remember to create global class variables (typically above
all your methods within the class) like the following (the last two matrices will be used later on),

 //Class model storage

 private Model gModel;

 //Aspect Ratio

 private float aspectRatio = 0.0f;

 //Position of our model

 private Vector3 positionVector;

 //Projection and view matrix

 private Matrix projection;

 private Matrix view;

It may seem odd that you’re sending your model name to this class only to set it to a Model (gModel) and you
can certainly put this in your main file (Game1.cs) but creating this class will make the code much cleaner
when you see the Render() method.

Note: I won’t go into the destructor mainly because we don’t do anything with it. It’s simply added as a habit
I’ve developed but helps round out the class a bit more. You don’t need to include this method but if you’d
like, place the following code within your class:

 ~GameModel() { }

SetPosition()

Set position will be used to set the position of our model using our global positionVector variable. This
method will be overloaded, meaning there will be two different methods of this class named SetPosition() but
each will use different parameters which will tell the compiler which method to use. The easiest way to set
the position vector would be to set it equal to another vector which is exactly what our first version of this
method is.

 public void SetPosition(Vector3 position)

 {

 //Set Position using a Vector

 positionVector = position;

 }

All that’s needed since this version is receiving the same type is set them equal to each other. The problem
arises when you don’t have a Vector3 to pass to SetPosition(). When we have something like a camera we
would probably have a vector but if we want to just specify a position it would be a hassle to create a vector,
set it to a position, and then pass the vector to our GameModel class. Instead, we’ll create an overloaded
method of SetPosition() that will accept 3 floats and will set them to our X, Y, and Z positions of the
positionVector variable. Here is the implementation of this method:

 public void SetPosition(float x, float y, float z)

 {

 //Set Position using floats

 positionVector.X = x;

 positionVector.Y = y;

 positionVector.Z = z;

 }

XNA makes working with vectors and the separate values of them really easy to define and set. All that’s
needed is 3 floats and we can access the X, Y, and Z of the positionVector and set them to the floats that are
passed in.

Render()

The Render() method of our GameModel class is the largest and potentially most confusing method in this
class. It also is the primary reason for creating a specific class for each model because instead of writing over
15 lines of code in our game’s primary Draw() method we’ll only need to call one. Here’s the full code for our
Render() method, we’ll discuss it line by line after.

 public void Render()

 {

 Matrix[] transforms = new Matrix[gModel.Bones.Count];

 gModel.CopyAbsoluteBoneTransformsTo(transforms);

 projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45.0f),

 aspectRatio, 1.0f, 10000.0f);

 view = Matrix.CreateLookAt(Vector3.Zero, positionVector, Vector3.Up);

 //Draw every mesh in the model

 foreach (ModelMesh mesh in gModel.Meshes)

 {

 //Set our mesh orientation, camera, and projection

 foreach (BasicEffect effect in mesh.Effects)

 {

 //Run default lighting

 effect.EnableDefaultLighting();

 //Model Matrices

 effect.View = view;

 effect.Projection = projection;

 effect.World = transforms[mesh.ParentBone.Index] *

Matrix.CreateTranslation(positionVector);

 }

 //Draw the mesh

 mesh.Draw();

 }

 }

This method looks confusing but most of it can be broken down into simple pieces.

Matrix[] transforms = new Matrix[gModel.Bones.Count];

 gModel.CopyAbsoluteBoneTransformsTo(transforms);

The method starts with creating a local matrix called transforms and we send it the amount of bones in our
model. Following we copy bones from our model in to our transforms matrix. These lines are only necessary
when a more complicated model is used that has its position, scale, and rotation defined by bones within the
model. If no such bone structure exists the code simply doesn’t use it.

projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45.0f),

 aspectRatio, 1.0f, 10000.0f);

view = Matrix.CreateLookAt(Vector3.Zero, positionVector, Vector3.Up);

Next we set two of our class’s global variables, the projection and view matrix variables. We need to orient
our model and camera in the game world and these variables allow us to do that. The projection matrix
creates a view frustum and accepts floats for a field of view (defined in radians, hence using MathHelper to
convert 45.0 degrees to radians), the aspect ratio (remember when we set this in the class constructor?), the
near plane distance, and the far plane distance. A frustum is what the camera sees and can best be described
as a sectioned, 5-sided pyramid on its side (Figure 3).

Figure 3 - Camera View Frustum

You can see where the front clipping plane and back clipping plane are located and everything in between is
our view frustum. The game camera will render anything in the view frustum and will desregard anything
outside of it. In fact, this leads to some drawing and loading problems that I won’t cover here but will go into
more in advanced camera and view tutorials.

Our Render() code has our front (or near) clipping plane 1.0f in front of the camera position and our back (or
far) clipping plane at 10000.0f. Obviously if you want to see further into the level just extend the far plane.
Second, we set our view matrix using the CreateLookAt() method of the Matrix class predefined in XNA.
CreateLookAt() sets the way our camera is looking by requiring a camera position, a target (or where we’re

looking at), and the world’s up direction. I’ve set the camera to the point (0,0,0) in our world, looking at our
target which will be located at our positionVector variable, and our worlds up direction is (0,1,0). It’s usually
safe to assume the up direction of the world is (0,1,0). You might ask, how did we setup the view frustum
before we had the camera location and target direction? Well we never specified where to place the frustum,
we only told the computer what the frustum’s definitions are, our camera will be the location of the view
point and the frustum will branch out from that point. It helps to think of the camera view as the actual point
the camera is at and the projection as what is shown, or projected, onto the screen.

Meshes and Effects

Next our Render() method contains two foreach loops which both set values and draw each mesh of our
model. A mesh is the plane area between vertices on a model. Our model already contains a property with
the number of meshes defined and we loop through each one using this line:

foreach (ModelMesh mesh in gModel.Meshes)

gModel is our global class model which we have filled in the constructor with the model we’d like to use. Each
mesh itself contains an effect which is applied.

Note: There is loads of information on the internet which I won’t go into in this specific tutorial but will build
up to later on. If you’re interested right now search the internet for vertex shaders, pixel shaders, XNA effects,
or a combination of those. (I’ve also written multiple works on pixel and vertex shaders, two of which you can
find here:
http://www.insidegamer.org/documents/Understanding%20Pixel%20And%20Vertex%20Shaders.pdf and
here: http://www.insidegamer.org/documents/Effects%20of%20Shader%20Technology.pdf).

Simply put, effects define lighting and tranformations applied to our view or the way our scene is projected
onto the screen. As a quick background, effects used to be built into the hardware graphics processing unit
(or graphics card) and didn’t allow games to really set themselves apart until programmable effects and
graphics processing units came out. Even though these effects were finally editable by the programmer, there
was still a default effect style which is called the fixed pipeline. Conversely, the programmable shader effects
were created and sent through what was called the programmable pipeline. For years DirectX had both
options, fixed pipeline and programmable pipeline. Now, XNA has completely removed the fixed pipeline in
favor of the programmable pipeline. Instead, a class has been defined that emulates what the fixed pipeline
provided, that class is the BasicEffect class. In later tutorials we’ll create our own effects and shaders but for
now we’ll stick with BasicEffect.

Back to the code, our second foreach runs through each effect that is run on the current mesh defined by our
above loop. We run this using the following code:

foreach (BasicEffect effect in mesh.Effects)

Remember, our purpose at this point is to define the way every effect looks on every mesh to properly render
them and display them on the screen. As kind of an added touch we call EnableDefaultLighting() from the
current effect to show a little light in the scene which will create some brightness or darkness on different
sides of the model.

//Run default lighting

 effect.EnableDefaultLighting();

This method is optional and without it you’ll get an ambient light that will shine the same color and brightness
on every surface. Next, we set the view and projection matrices to our respective effect properties which,

http://www.insidegamer.org/documents/Understanding%20Pixel%20And%20Vertex%20Shaders.pdf
http://www.insidegamer.org/documents/Effects%20of%20Shader%20Technology.pdf

again, will be used to display the effect and in turn the mesh. The final line of this loop sets what is called the
world matrix property of our effect.

//Model Matrices

 effect.View = view;

 effect.Projection = projection;

 effect.World = transforms[mesh.ParentBone.Index] *

Matrix.CreateTranslation(positionVector);

So far we’ve defined two matrices used for rendering, the view matrix (camera position and target) and the
projection matrix (view frustum distance and settings). There is one more traditional matrix in rendering and
that’s the world matrix. We’ve defined everything so far in 3D coordinates with an X-, Y-, and Z-axis. If you
haven’t noticed, your computer monitor does not project in 3D, it projects a flat 2D screen. Suppose your
monitor projected in 3D, you would be able to move your mouse left, right, and forward and back but we
currently don’t have that. The purpose of the world matrix is to take those 3D positions and compress it down
to 2D. Imagine taking a paper cup and dropping a heavy book on top of it and making it completely flat, then
taking off the book and looking at the cup from the top. Back to code, we set the world property as such:

effect.World = transforms[mesh.ParentBone.Index] *

Matrix.CreateTranslation(positionVector);

Again, the call to the transforms matrix is only necessary if the model is complex and has a heirarchal
structure. Although, if you do have a model like this the transforms matrix will contain potential shaping (such
as rotations and scales) and will effect the way your effect and mesh need to be translated to 2D. We then
multiply it by a translation matrix which is created using the positionVector and tells the game where our
model should be placed. If you want to alter the way the model appears or is translated into 2D space, you
can add rotations and scales in this line using “Matrix.” and following it with which operation you’d like
(CreateRotationY(), CreateScale(), etc…). Just make sure you multiply your rotation or scale with the
translation matrix and transform matrix.

//Draw the mesh

 mesh.Draw();

Finally, the last line in the Render() method is done outside the effects loop but within the mesh loop. We call
the Draw() method of the mesh to draw the mesh to the screen using the parameters we defined in the
effects loop (in this case we didn’t have any direct changes to the mesh in the mesh loop but it would take any
of those changes as well).

Implementing the GameModel Class

The hard part is over, the GameModel class is finished and all we need to do is go back to our main game file
(Game1.cs) and implement the class. First let’s create a GameModel object stemming from our class. Near
the top of your Game1 class you should see two lines creating your GraphicsDeviceManager and
ContentManager objects. Just under this add this line:

 GameModel myHouse;

There are plenty of free models on the internet or you can make your own if you have any type of 3D model
program, just make sure your model has the extension of .x or .fbx (these are the only two formats supported
by XNA). You can find a simple house model I’ve created here:
http://www.insidegamer.org/documents/houseModel.zip. Make sure you include your model and texture
files into your project by right clicking on the Content folder, selecting ‘Add Existing Item…’, and browsing to
the files. Visual Studio will create copies of these files and place them in your solution’s directory.

http://www.insidegamer.org/documents/houseModel.zip

Next we need to call the constructor of the class object which we can do in the overrided Initialize() method
XNA creates with a new project. You should see a comment within this method which you should add the
following line under (I’ve added the comment line for better understanding):

// TODO: Add your initialization logic here

 myHouse = new GameModel(this.Content, graphics, "houseModel");

Using the ‘new’ keyword a new instantiation of the class is created and passed the three objects we asked for
(our game’s ContentManager, GraphicsDeviceManager, and model name). Notice the model doesn’t need the
extension attached, just the name of the file. Our class at this point in the code will have our model created,
our aspect ratio defined, and set our model to a default position in the world. We’ve set our camera at this
point to that same position so we’ll want to move the model using the SetPosition() method we’ve defined.
Also, render it just after we place it so we can do both these operations in the overridden Draw() method
Game1 contains. Place this code within your Draw() (you should see the comment below already inside your
Draw()):

 myHouse.SetPosition(0.0f, 0.0f, 5.0f);

 // TODO: Add your drawing code here

 myHouse.Render();

Work with adjusting these values depending on the size of your model, the more you test the better you will
understand the model you’re using and it’s positioning. Notice, the model I’ve created has it’s center at the
origin. If the model sat on the origin, the camera would either always look below the model when set to (0.0f,
0.0f, 0.0f) or always above it if the model was moved down. Take a second to look back at your GameModel
class and your Game1 class. All the code listed in your GameModel class can be placed directly in your Game1
class but would get really messy. Imagine having four models you want to put in the scene, you would need to
rewrite the render code 4 times in your Draw() method (I’ve tried it with only two models and it was
extremely messy!).

Conclusion

As simplistic as it may seem (or may not seem) the GameModel class is a massive step forward. We skipped
putting all this directly in Game1 because game programming is really based on dynamic code. If you have 10
levels, you don’t want to write GameModel classes for each level, you want one GameModel class that brings
in whatever models are needed (the models are defined in each level, not the model import class). If you’ve
noticed, there’s a problem with this class. Games are filled with hundreds of models and we had to code an
object to this class one-by-one for each model we wanted. A more advanced and standard way is to have a
class that manages all the models and creates them dynamically (something we’ll get into much later as we
build onto this class). The next problem we have is that we can’t move our camera which will be fixed in the
next tutorial where we build a camera class and integrate it with our models. Don’t worry if you don’t
completely understand the view, projection, and world matrices (it took me months to completely understand
the difference between them and what they do). If you aren’t sure you could tell another programmer in
words what each piece of this class does, just keep reading it over or even research the topic online until you
can.

Suggested Exercises

1) Create a second instantiation of the GameModel class and move the objects so they sit side by side.

2) Rotate the model about the different axis.

3) Create a method in the GameModel class where you can specify the rotation of the model so you can
change it in your main file. Use this new method to constantly rotate the model while the game is
running.

4) Create a method in the same manner as Problem 3 but allow this method to scale the object.

5) Use some basic input to rotate a model. [HINT: Look at the default input check XNA builds and use that
with IntelliSense to rotate the model]

